ABSTRACT

This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs.

While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes.

Key Features:

  • Covers the depth and breadth of the field
  • Includes contributions from leading academics and industry professionals across the world
  • Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications

A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.

1. Introduction to Section G1: Structure/Microstructure 2. X-ray Studies: Chemical Crystallography 3. X-ray Studies: Phase transformations and microstructure changes 4. Transmission Electron Microscopy 5. An Introduction to Digital Image Analysis of Superconductors 6. Optical Microscopy 7. Neutron Techniques: Flux-Line Lattice 8. Introduction to Section G2: Measurement and Interpretation of Electromagnetic Properties 9. Electromagnetic Properties of Superconductors 10. Numerical Models of the Electromagnetic 11. Behavior of Superconductor 12. DC Transport Critical Currents 13. Characterisation of the Transport Critical Current Density for Conductor Applications 14. Magnetic Measurements of Critical Current Density, Pinning and Flux Creep 15. AC Susceptibility 16. AC Losses in Superconducting Materials, Wires, and Tapes 17. Characterization of Superconductor Magnetic Properties in Crossed Magnetic Fields 18. Microwave Impedance 19. Local Probes of Field Distribution 20. Some unusual and systematic properties of hole-doped cuprates in the normal and superconducting states 21. Thermal, Mechanical & Other Properties 22. Thermal Properties: Specific Heat 23. Thermal Properties: Thermal Conductivity 24. Thermal Properties: Thermal Expansion 25. Mechanical Properties 26. Magneto-Optical Characterization Techniques 27. Introduction to Large Scale Applications 28. Electromagnet Fundamentals 29. Superconducting Magnet Design 30. MRI 31. Current Leads 32. Cables 33. AC and DC Power Transmission 34. Fault-Current Limiters 35. Energy Storage 36. Transformers 37. Electrical Machines Using HTS Conductors 38. Electrical Machines Using Bulk HTS 39. Homopolar Motors  40. Magnetic Separation 41. Superconducting Radiofrequency Cavities 42. Introduction to Section H2: High-Frequency Devices 43. Microwave Resonators and Filters 44. Transmission Lines 45. Antennae 46. Introduction to Section H3: Josephson Junction Devices 47. Josephson Junctions Properties 48. SQUIDs and Applications 49. Biomagnetism 50. Non-destructive Evaluation 51. Digital Electronics 52. SC AD Converters 53. Superconducting Qubits 54. Introduction to Radiation and Particle Detectors that Use Superconductivity 55. Superconducting Tunnel Junction Radiation Detectors 56. Transition-edge Sensors 57. Superconducting Materials for Microwave Kinetic Inductance Detectors 58. Metallic Magnetic Calorimeters 59. Optical Detectors and Sensors 60. Low Noise Superconducting Mixers for the Terahertz Frequency Range 61. Applications: Metrology