Understanding Flow Characteristics in Metal Additive Manufacturing

Authored by: Carl R. Hartsfield , Travis E. Shelton , Gregory R. Cobb , Ryan A. Kemnitz , Joseph Weber

Handbook of Scholarly Publications from the Air Force Institute of Technology (AFIT), Volume 1, 2000–2020

Print publication date:  December  2022
Online publication date:  December  2022

Print ISBN: 9781032116679
eBook ISBN: 9781003220978
Adobe ISBN:

10.1201/9781003220978-25

 Download Chapter

 

Abstract

In fluid flow, the frictional effects from interior surfaces of flow components create pressure loss across the surface. Understanding this inherent pressure loss due to friction and other phenomena is important when designing a flow system. For conventional manufacturing, friction loss has been empirically studied and is well known in the engineering community. However, newer manufacturing techniques, such as laser powder bed fusion (LPBF), an additive manufacturing technique, need to be understood. The inherent flow conditions resulting from the additive processes were studied. Test samples were printed with the flow path oriented in the vertical direction with different channel diameters to characterize the inherent fundamental flow properties of the process. Moody diagrams were replicated for a greater understanding of possibilities and shortfalls when implementing LPBF into design applications. Experimental flow testing revealed that greater effective sand grain roughness resulted from this process when compared to conventional machining methods. This roughness did not correlate well to the average roughness measured with a laser scanning microscope but was consistent with the average particle size of the powder metal feedstock.

 Cite
Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.