ABSTRACT

The vertices and edges of a graph often have quantitative information associated with them, such as supplies and demands (for vertices), and distance, length, capacity, and cost (for edges). Relative to such networks, a number of discrete optimization problems arise in a variety of disciplines: statistics, electrical engineering, operations research, combinatorics, and computer science. Typical applications include designing least cost telecommunication systems, maximizing throughput in a manufacturing system, finding a minimum cost route or set of routes for delivery vehicles, and distributing electricity from a set of supply points to meet customer demands at minimum cost. In this chapter, a number of classical network optimization problems are studied and algorithms are described for their exact or approximate solution. Models and analysis of small-world networks are also presented.