Arrangements

Authored by: Dan Halperin

Discrete and Computational Geometry

Print publication date:  April  2004
Online publication date:  April  2004

Print ISBN: 9781584883012
eBook ISBN: 9781420035315
Adobe ISBN:

10.1201/9781420035315.ch24

 Download Chapter

 

Abstract

Given a finite collection S of geometric objects such as hyperplanes or spheres in ? d , the arrangement A ( S ) is the decomposition of ? d into connected open cells of dimensions 0, 1,…,d induced by S. Besides being interesting in their own right, arrangements of hyperplanes have served as a unifying structure for many problems in discrete and computational geometry. With the recent advances in the study of arrangements of curved (algebraic) surfaces, arrangements have emerged as the underlying structure of geometric problems in a variety of “physical world” application domains such as robot motion planning and computer vision. This chapter is devoted to arrangements of hyperplanes and of curved surfaces in low-dimensional Euclidean space, with an emphasis on combinatorics and algorithms.

 Cite
Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.