Discriminative Mixed Membership Models

Authored by: Edoardo M. Airoldi , David M. Blei , Elena A. Erosheva , Stephen E. Fienberg , Hanhuai Shan , Arindam Banerjee

Handbook of Mixed Membership Models and Their Applications

Print publication date:  November  2014
Online publication date:  November  2014

Print ISBN: 9781466504080
eBook ISBN: 9781466504097
Adobe ISBN:

10.1201/b17520-21

 Download Chapter

 

Abstract

Although mixed membership models have achieved great success in unsupervised learning, they have not been applied as widely to classification problems. In this chapter, we discuss a family of discriminative mixed membership (DMM) models. By combining unsupervised mixed membership models with multi-class logistic regression, DMM models can be used for classification. In particular, we discuss discriminative latent Dirichlet allocation (DLDA) for text classification and discriminative mixed membership naive Bayes (DMNB) for classification on general feature vectors. Two variation inference algorithms are considered for learning the models, including a fast inference algorithm which uses fewer variational parameters and is substantially more efficient than the standard mean field variational approximation. The efficacy of the models is demonstrated by extensive experiments on multiple datasets.

 Cite
Search for more...
Back to top

Use of cookies on this website

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more in our Privacy Policy. By continuing to use the site you are agreeing to our use of cookies.