Sorry, you do not have access to this eBook
A subscription is required to access the full text content of this book.
Shungite quantum dots are associated with nanosize fragments of reduced graphene oxide similarly to synthetic graphene quantum dots thus forming a common class of graphene quantum dots (GQDs). Colloidal dispersions of powdered shungite in water, carbon tetrachloride, and toluene form the ground for the GQD photonic peculiarities manifestation. Morphological study shows a steady trend of GQDs to form fractals and a drastic change in the colloids fractal structure caused by solvent was reliably established. Spectral study reveals a dual character of emitting centers: individual GQDs are responsible for the spectra position while the fractal structure of GQD colloids provides high broadening of the spectra due to structural inhomogeneity of the colloidal dispersions and a peculiar dependence on excitation wavelength. For the first time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions which pave the way for a theoretical treatment of GQD photonics.
A subscription is required to access the full text content of this book.
Other ways to access this content: