ABSTRACT

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments.

From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials:

  • Covers fundamental concepts, properties, methods, and practical applications.
  • Focuses on one important type of silicon nanomaterial in every chapter.
  • Discusses formation, properties, and applications for each material.
  • Written in a tutorial style with basic equations and fundamentals included in an extended introduction.
  • Highlights materials that show exceptional properties as well as strong prospects for future applications.

 

Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

I. Low-Dimensional Structures. One-dimensional Porous Silicon Photonic Crystals. Two-Dimensional Silicon. Two-Dimensional Silicon Nanosheets.Nanocrystalline Silicon Thin Films. Fundamentals of Silicene. Silicene Nanoribbons. Hexagonal Honeycomb Silicon: Silicene. II. Clusters, Nanoparticles, Quantum Dots. Fluorescent Silicon Clusters. Silicon Nanoparticles from Pulsed Laser Ablation. Silicon Nanoparticles via Pulsed Laser Ablation in Liquid. Silicon Nanoparticles with Zinc-Blende Structure. Silicon Nanocrystals from Plasma Synthesis. Silicon Nanocrystals in Water. Surface-Engineered Silicon Nanocrystals. Silicon Nanocrystals Doped with Boron and Phosphorous. Organically-Capped Silicon Nanocrystals. Near-Infrared Luminescent Colloidal Silicon Nanocrystals. Hydrogen-Terminated Silicon Quantum Dots. III. Nanowires, Nanotubes. Silicon Nanowires as Electron Field Emitters. Silicon nanowires for Li-based battery Anodes. Coated Silicon Nanowires for Battery Applications. Ion-Implanted Silicon Nanowires. Silicon Nanowires for Evolutionary Nanotechnology. Fundamentals of Silicon Nanotubes. Amorphous Silicon Nanotubes. Nanotubular-Structured Porous Silicon. Porous Silicon Nanotube Arrays.