Sorry, you do not have access to this eBook
A subscription is required to access the full text content of this book.
The overall purpose of organizational staffing is to deliver fresh hires into organizations. Efforts to improve staffing have historically involved pursuing two primary goals: improving job applicant quality and improving the process used to quantify and make decisions about those applicants. Industrial/-organizational (I-O) psychologists, based upon decades of research, have many specific processes they commonly employ to meet these goals. Despite this, a family of technologies commonly referred to as big data has begun to appear in staffing processes without much, if any, validation from I-O psychologists. Data scientists have claimed that such technologies have the potential to “disrupt” the bedrock staffing procedures on which much of modern I-O psychology has been built. The truth of this claim is difficult to determine for many reasons, but most glaringly because data scientists and I-O psychologists come from such different theoretical perspectives that it is often difficult to find common ground even in casual conversation.
A subscription is required to access the full text content of this book.
Other ways to access this content: