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Chapter 4

Methods for Linear ODEs
of Arbitrary Order

4.1 Linear Equations with Constant Coefficients

4.1.1 Homogeneous Linear Equations. General Solution

An nth-order homogeneous linear equation with constant coefficients has the general form

y(n)x + an−1y
(n−1)
x + · · ·+ a1y

′
x + a0y = 0. (4.1.1.1)

The general solution of this equation is determined by the roots of the characteristic

equation

P (λ) = 0, where P (λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0. (4.1.1.2)

The following cases are possible:

1◦. All roots λ1, λ2, . . . , λn of the characteristic equation (4.1.1.2) are real and distinct.

Then the general solution of the homogeneous linear differential equation (4.1.1.1) has the

form

y = C1 exp(λ1x) + C2 exp(λ2x) + · · ·+ Cn exp(λnx).

2◦. There are m equal real roots λ1 = λ2 = · · · = λm (m≤ n), and the other roots are real

and distinct. In this case, the general solution is given by

y = exp(λ1x)(C1 + C2x+ · · ·+ Cmx
m−1)

+ Cm+1 exp(λm+1x) +Cm+2 exp(λm+2x) + · · ·+ Cn exp(λnx).

3◦. There are m equal complex conjugate roots λ = α± iβ (2m ≤ n), and the other roots

are real and distinct. In this case, the general solution is

y = exp(αx) cos(βx)(A1 +A2x+ · · · +Amx
m−1)

+ exp(αx) sin(βx)(B1 +B2x+ · · ·+Bmx
m−1)

+ C2m+1 exp(λ2m+1x) +C2m+2 exp(λ2m+2x) + · · · +Cn exp(λnx),

where A1, . . . , Am, B1, . . . ,Bm, C2m+1, . . . , Cn are arbitrary constants.
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198 METHODS FOR LINEAR ODES OF ARBITRARY ORDER

4◦. In the general case, where there are r different roots λ1, λ2, . . . , λr of multiplicities

m1, m2, . . . , mr, respectively, the left-hand side of the characteristic equation (4.1.1.2)

can be represented as the product

P (λ) = (λ− λ1)m1(λ− λ2)m2 . . . (λ− λr)mr ,

where m1 +m2 + · · ·+mr = n. The general solution of the original equation is given by

the formula

y =

r∑

k=1

exp(λkx)(Ck,0 + Ck,1x+ · · ·+ Ck,mk−1x
mk−1),

where Ck,l are arbitrary constants.

If the characteristic equation (4.1.1.2) has complex conjugate roots, then in the above

solution, one should extract the real part on the basis of the relation exp(α ± iβ) =
eα(cos β ± i sin β).

Example 4.1. Find the general solution of the linear third-order equation

y′′′ + ay′′ − y′ − ay = 0.

Its characteristic equation is λ3 + aλ2 − λ− a = 0, or, in factorized form,

(λ+ a)(λ− 1)(λ+ 1) = 0.

Depending on the value of the parameter a, three cases are possible.

1. Case a 6= ±1. There are three different roots, λ1 = −a, λ2 = −1, and λ3 = 1. The general

solution of the differential equation is expressed as y = C1e
−ax + C2e

−x + C3e
x.

2. Case a = 1. There is a double root, λ1 = λ2 = −1, and a simple root, λ3 = 1. The general

solution of the differential equation has the form y = (C1 + C2x)e
−x + C3e

x.

3. Case a= −1. There is a double root, λ1 = λ2 = 1, and a simple root, λ3 = −1. The general

solution of the differential equation is expressed as y = (C1 + C2x)e
x + C3e

−x.

Example 4.2. Consider the linear fourth-order equation

y′′′′xxxx − y = 0.

Its characteristic equation, λ4 − 1 = 0, has four distinct roots, two real and two pure imaginary,

λ1 = 1, λ2 = −1, λ3 = i, λ4 = −i.

Therefore the general solution of the equation in question has the form (see Item 3◦)

y = C1e
x + C2e

−x + C3 sinx+ C4 cosx.

4.1.2 Nonhomogeneous Linear Equations. General and Particular
Solutions

1◦. An nth-order nonhomogeneous linear equation with constant coefficients has the gen-

eral form

y(n)x + an−1y
(n−1)
x + · · ·+ a1y

′
x + a0y = f(x). (4.1.2.1)

The general solution of this equation is the sum of the general solution of the cor-

responding homogeneous equation with f(x) ≡ 0 (see Section 4.1.1) and any particular

solution of the nonhomogeneous equation (4.1.2.1).
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4.1. Linear Equations with Constant Coefficients 199

If all the roots λ1, λ2, . . . , λn of the characteristic equation (4.1.1.2) are different,

equation (4.1.2.1) has the general solution:

y =

n∑

ν=1

Cνe
λνx +

n∑

ν=1

eλνx

P ′
λ(λν)

∫
f(x)e−λνx dx (4.1.2.2)

(for complex roots, the real part should be taken).

In the general case, if the characteristic equation (4.1.1.2) has multiple roots, the solu-

tion to equation (4.1.2.1) can be constructed using formula (4.2.2.2).

2◦. Table 4.1 lists the forms of particular solutions corresponding to some special forms of

functions on the right-hand side of the linear nonhomogeneous equation.

TABLE 4.1

Forms of particular solutions of the constant-coefficient nonhomogeneous linear equation

y
(n)
x + an−1y

(n−1)
x + · · ·+ a1y

′
x + a0y = f(x) that correspond to some special forms of the function f(x)

Form of the

function f(x)
Roots of the characteristic equation

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

Form of a particular

solution y = ỹ(x)

Zero is not a root of the

characteristic equation (i.e., a0 6= 0)
P̃m(x)

Pm(x)
Zero is a root of the

characteristic equation (multiplicity r)
xrP̃m(x)

α is not a root of the

characteristic equation
P̃m(x)eαx

Pm(x)eαx

(α is a real constant) α is a root of the

characteristic equation (multiplicity r)
xrP̃m(x)eαx

iβ is not a root of the

characteristic equation
P̃ν(x) cos βx
+ Q̃ν(x) sin βxPm(x) cos βx

+Qn(x) sin βx iβ is a root of the

characteristic equation (multiplicity r)
xr[P̃ν(x) cos βx
+ Q̃ν(x) sin βx]

α+ iβ is not a root of the

characteristic equation
[P̃ν(x) cos βx
+ Q̃ν(x) sin βx]e

αx
[Pm(x) cos βx

+Qn(x) sin βx]e
αx

α+ iβ is a root of the

characteristic equation (multiplicity r)
xr[P̃ν(x) cos βx
+ Q̃ν(x) sin βx]e

αx

Notation: Pm andQn are polynomials of degrees m and nwith given coefficients; P̃m,

P̃ν , and Q̃ν are polynomials of degrees m and ν whose coefficients are determined

by substituting the particular solution into the basic equation; ν = max(m, n); and

α and β are real numbers, i2 = −1.

3◦. Consider the Cauchy problem for equation (4.1.2.1) subject to the homogeneous initial

conditions

y(0) = y′x(0) = · · · = y(n−1)
x (0) = 0. (4.1.2.3)



D
ow

nl
oa

de
d 

B
y:

 1
0.

2.
97

.1
36

 A
t: 

20
:3

3 
04

 J
un

 2
02

3;
 F

or
: 9

78
13

15
11

76
38

, c
ha

pt
er

4,
 1

0.
12

01
/9

78
13

15
11

76
38

-4
“K16435’ — 2017/9/28 — 15:05 — #226

200 METHODS FOR LINEAR ODES OF ARBITRARY ORDER

Let y(x) be the solution of problem (4.1.2.1), (4.1.2.3) for arbitrary f(x) and let u(x) be

the solution of the auxiliary, simpler problem (4.1.2.1), (4.1.2.3) with f(x) ≡ 1, so that

u(x) = y(x)|f(x)≡1. Then the formula

y(x) =

∫ x

0
f(t)u′x(x− t) dt

holds. It is called the Duhamel integral.

⊙ Literature for Section 4.1: G. M. Murphy (1960), L. E. El’sgol’ts (1961), N. M. Matveev (1967), A. N.

Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1980), D. Zwillinger (1997), G. A. Korn and T. M. Korn

(2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007).

4.2 Linear Equations with Variable Coefficients

4.2.1 Homogeneous Linear Equations. General Solution. Order
Reduction. Liouville Formula

◮ Structure of the general solution.

The general solution of the nth-order homogeneous linear differential equation

fn(x)y
(n)
x + fn−1(x)y

(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y = 0 (4.2.1.1)

has the form

y = C1y1(x) + C2y2(x) + · · ·+ Cnyn(x). (4.2.1.2)

Here y1(x), y2(x), . . . , yn(x) is a fundamental system of solutions (the yk are linearly

independent particular solutions, yk 6≡ 0); C1, C2, . . . , Cn are arbitrary constants.

◮ Utilization of particular solutions for reducing the order of the equation.

1◦. Let y1= y1(x) be a nontrivial particular solution of equation (4.2.1.1). The substitution

y = y1(x)

∫
z(x) dx

results in a linear equation of order n− 1 for the function z(x).

2◦. Let y1 = y1(x) and y2 = y2(x) be two nontrivial linearly independent solutions of

equation (4.2.1.1). The substitution

y = y1

∫
y2w dx− y2

∫
y1w dx

results in a linear equation of order n− 2 for w(x).

3◦. Suppose that m linearly independent solutions y1(x), y2(x), . . . , ym(x) of equation

(4.2.1.1) are known. Then one can reduce the order of the equation to n−m by successive

application of the following procedure. The substitution y = ym(x)

∫
z(x) dx leads to an

equation of order n− 1 for the function z(x) with known linearly independent solutions:

z1 =
( y1
ym

)′
x
, z2 =

( y2
ym

)′
x
, . . . , zm−1 =

( ym−1

ym

)′
x
.
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4.2. Linear Equations with Variable Coefficients 201

The substitution z = zm−1(x)

∫
w(x) dx yields an equation of order n−2. Repeating this

procedure m times, we arrive at a homogeneous linear equation of order n−m.

◮ Wronskian determinant and Liouville formula.

The Wronskian determinant (or simply, Wronskian) is the function defined as

W (x) =

∣∣∣∣∣∣∣∣

y1(x) · · · yn(x)
y′1(x) · · · y′n(x)
· · · · · · · · ·

y
(n−1)
1 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣∣
, (4.2.1.3)

where y1(x), . . . , yn(x) is a fundamental system of solutions of the homogeneous equa-

tion (4.2.1.1); y
(m)
k (x) =

dmyk
dxm

, m = 1, . . . , n− 1; k = 1, . . . , n.

The following Liouville formula holds:

W (x) =W (x0) exp

[
−
∫ x

x0

fn−1(t)

fn(t)
dt

]
.

4.2.2 Nonhomogeneous Linear Equations. General Solution.
Superposition Principle

◮ Construction of the general solution.

1◦. The general nonhomogeneous nth-order linear differential equation has the form

fn(x)y
(n)
x + fn−1(x)y

(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y = g(x). (4.2.2.1)

The general solution of the nonhomogeneous equation (4.2.2.1) can be represented as the

sum of its particular solution and the general solution of the corresponding homogeneous

equation (4.2.1.1).

2◦. Let y1(x), . . . , yn(x) be a fundamental system of solutions of the homogeneous equa-

tion (4.2.1.1), and let W (x) be the Wronskian determinant (4.2.1.3). Then the general

solution of the nonhomogeneous linear equation (4.2.2.1) can be represented as

y =
n∑

ν=1

Cνyν(x) +
n∑

ν=1

yν(x)

∫
Wν(x) dx

fn(x)W (x)
, (4.2.2.2)

where Wν(x) is the determinant of the matrix (4.2.1.3) in which the νth column is replaced

by the column vector with the elements 0, 0, . . . , 0, g.

◮ Superposition principle.

The solution of a nonhomogeneous linear equation

L[y] =

m∑

k=1

gk(x), L[y] ≡ fn(x)y(n)x + fn−1(x)y
(n−1)
x + · · ·+ f1(x)y

′
x + f0(x)y
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202 METHODS FOR LINEAR ODES OF ARBITRARY ORDER

is determined by adding together the solutions,

y =
m∑

k=1

yk,

of m (simpler) equations,

L[yk] = gk(x), k = 1, 2, . . . , m,

corresponding to respective nonhomogeneous terms in the original equation.

◮ Euler equation.

1◦. The nonhomogeneous Euler equation has the form

xny(n)x + an−1x
n−1y(n−1)

x + · · ·+ a1xy
′
x + a0y = f(x).

The substitution x = bet (b 6= 0) leads to a constant-coefficient linear equation of the

form (4.1.2.1).

2◦. Particular solutions of the homogeneous Euler equation [with f(x) ≡ 0] are sought in

the form y = xk. If all k are real and distinct, its general solution is expressed as

y(x) = C1|x|k1 + C2|x|k2 + · · · + Cn|x|kn .

Remark 4.1. To a pair of complex conjugate values k = α ± iβ there corresponds a pair of

particular solutions: y = |x|α sin(β|x|) and y = |x|α cos(β|x|).

4.2.3 Nonhomogeneous Linear Equations. Cauchy Problem.
Reduction to Integral Equations

◮ Cauchy problem. Cauchy formula.

Let y(x, σ) be the solution to the Cauchy problem for the homogeneous equation (4.2.1.1)

with nonhomogeneous initial conditions at x = σ:

y(σ) = y′x(σ) = · · · = y(n−2)
x (σ) = 0, y(n−1)

x (σ) = 1,

where σ is an arbitrary parameter. Then a particular solution of the nonhomogeneous linear

equation (4.2.2.1) with homogeneous boundary conditions

y(x0) = y′x(x0) = · · · = y(n−1)
x (x0) = 0

is given by the Cauchy formula

ȳ(x) =

∫ x

x0

y(x, σ)
g(σ)

fn(σ)
dσ.
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4.2. Linear Equations with Variable Coefficients 203

◮ Reduction of the Cauchy problem for ODEs to integral equations.

1◦. Integral equations play an important role in the theory of ordinary differential equa-

tions. The reduction of Cauchy and boundary value problems to integral equations allows

for the application of iteration and finite-difference methods of solving integral equations.

These methods are, as a rule, substantially simpler than those used for solving differential

equations. Moreover, many delicate proofs and qualitative results of the theory of dif-

ferential equations have been obtained by the investigation of the corresponding integral

equations.

2◦. Consider the Cauchy problem for nth order ODE (4.2.2.1) with the homogeneous ini-

tial conditions at the point x = a:

y(a) = y′x(a) = · · · = y(n−1)
x (a) = 0. (4.2.3.1)

Introducing a new unknown function by

y(x) =
1

(n− 1)!

∫ x

a
(x− t)n−1u(t) dt (4.2.3.2)

and differentiating (4.2.3.2) n times, we get

y(k)x (x) =
1

(n− k − 1)!

∫ x

a
(x− t)n−k−1u(t) dt, k = 1, . . . , n− 1;

y(n)x (x) = u(x).

(4.2.3.3)

Obviously, the function (4.2.3.2) satisfies the initial conditions (4.2.3.1). By substituting

(4.2.3.3) into the left-hand side of equation (4.2.2.1), we obtain

fn(x)u(x) +

∫ x

a
K(x, t)u(t) dt = g(x), (4.2.3.4)

where

K(x, t) = fn−1(x) + fn−2(x)
x− t
1!

+ · · ·+ f0(x)
(x − t)n−1

(n− 1)!
. (4.2.3.5)

Thus, the Cauchy problem (4.2.2.1)–(4.2.3.1) has been reduced to the integral equation

(4.2.3.4)–(4.2.3.5), which is a Volterra equation of the second kind. Finding the function

u(x) from (4.2.3.4) and using formula (4.2.3.2) we obtain the desired solution y(x).

The solution of the integral equation (4.2.3.4) can be obtained using, for example, the

method of successive approximations with the recurrence relation

um+1(x) +
1

fn(x)

∫ x

a
K(x, t)um(t) dt =

g(x)

fn(x)
, (4.2.3.6)

where m = 0, 1, 2, . . . The function u0(x) = 0 can be taken as the zeroth approximation;

then u1(x) = g(x)/fn(x).

For more efficient numerical methods for integral equations of the form (4.2.3.4), see

the book by Polyanin & Manzhirov (2008).
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204 METHODS FOR LINEAR ODES OF ARBITRARY ORDER

Remark 4.2. The Cauchy problem for equation (4.2.2.1) with nonhomogeneous boundary con-

ditions

y(a) = b0, y′x(a) = b1, . . . , y(n−1)
x (a) = bn−1

can be reduced to a Cauchy problem with homogeneous boundary conditions for another function

w(x) with the help of the substitution

y(x) = w(x) +

n−1∑

k=1

bk
(x − a)k

k!
.

⊙ Literature for Section 4.2: G. M. Murphy (1960), L. E. El’sgol’ts (1961), N. M. Matveev (1967), E. Kamke

(1977), A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov (1980), D. Zwillinger (1997), G. A. Korn and

T. M. Korn (2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007, 2008).

4.3 Laplace Transform and the Laplace Integral.

Applications to Linear ODEs

4.3.1 Laplace Transform and the Inverse Laplace Transform

◮ Laplace transform.

The Laplace transform of an arbitrary (complex-valued) function f(x) of a real variable x
(x ≥ 0) is defined by

f̃(p) =

∫ ∞

0
e−pxf(x) dx, (4.3.1.1)

where p = s+ iσ is a complex variable.

The Laplace transform exists for any continuous or piecewise-continuous function sat-

isfying the condition |f(x)| < Meσ0x with some M > 0 and σ0 ≥ 0. In the following,

σ0 often means the greatest lower bound of the possible values of σ0 in this estimate; this

value is called the growth exponent of the function f(x).
For any f(x), the transform f̃(p) is defined in the half-plane Re p > σ0 and is analytic

there.

For brevity, we shall write formula (4.3.1.1) as follows:

f̃(p) = L
{
f(x)

}
.

◮ Inverse Laplace transform.

Given the transform f̃(p), the function f(x) can be found by means of the inverse Laplace

transform

f(x) =
1

2πi

∫ c+i∞

c−i∞
f̃(p)epx dp, i2 = −1, (4.3.1.2)

where the integration path is parallel to the imaginary axis and lies to the right of all singu-

larities of f̃(p), which corresponds to c > σ0.

The integral in inversion formula (4.3.1.2) is understood in the sense of the Cauchy

principal value: ∫ c+i∞

c−i∞
f̃(p)epx dp = lim

ω→∞

∫ c+iω

c−iω
f̃(p)epx dp.
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4.3. Laplace Transform and the Laplace Integral. Applications to Linear ODEs 205

In the domain x < 0, formula (4.3.1.2) gives f(x) ≡ 0.

Formula (4.3.1.2) holds for continuous functions. If f(x) has a (finite) jump disconti-

nuity at a point x = x0 > 0, then the left-hand side of (4.3.1.2) is equal to 1
2 [f(x0 − 0) +

f(x0 + 0)] at this point (for x0 = 0, the first term in the square brackets must be omitted).

For brevity, we write the Laplace inversion formula (4.3.1.2) as follows:

f(x) = L−1
{
f̃(p)

}
.

There are tables of direct and inverse Laplace transforms (see Sections S3.1 and S3.2,

which are handy in solving linear differential and integral equations.

4.3.2 Main Properties of the Laplace Transform. Inversion Formulas
for Some Functions

◮ Main properties of the Laplace transform.

1◦. The main properties of the correspondence between functions and their Laplace trans-

forms are gathered in Table 4.2.

2◦. The Laplace transforms of some functions are listed in Table 4.3; for more detailed

tables see Section S3.1 and the list of references at the end of this section.

TABLE 4.2

Main properties of the Laplace transform

No. Function Laplace transform Operation

1 af1(x) + bf2(x) af̃1(p) + bf̃2(p) Linearity

2 f(x/a), a > 0 af̃(ap) Scaling

3
f(x− a),

f(ξ) ≡ 0 for ξ < 0 e−apf̃(p)
Shift of

the argument

4 xnf(x); n = 1, 2, . . . (−1)nf̃ (n)
p (p)

Differentiation

of the transform

5
1

x
f(x)

∫ ∞

p

f̃(q) dq Integration

of the transform

6 eaxf(x) f̃(p− a)
Shift in

the complex plane

7 f ′
x(x) pf̃(p)− f(+0) Differentiation

8 f (n)
x (x) pnf̃(p)−

n∑
k=1

pn−kf (k−1)
x (+0) Differentiation

9 xmf (n)
x (x), m = 1, 2, . . . (−1)m

dm

dpm

[
pnf̃(p)−

n∑
k=1

pn−kf (k−1)
x (+0)

]
Differentiation

10
dn

dxn

[
xmf(x)

]
, m ≥ n (−1)mpn

dm

dpm
f̃(p) Differentiation

11

∫ x

0

f(t) dt f̃(p)

p
Integration

12

∫ x

0

f1(t)f2(x− t) dt f̃1(p)f̃2(p) Convolution
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206 METHODS FOR LINEAR ODES OF ARBITRARY ORDER

TABLE 4.3

The Laplace transforms of some functions

No. Function, f(x) Laplace transform, f̃(p) Remarks

1 1 1/p

2 xn n!

pn+1
n = 1, 2, . . .

3 xa Γ(a+ 1)p−a−1 a > −1

4 e−ax (p+ a)−1

5 xae−bx Γ(a+ 1)(p+ b)−a−1 a > −1

6 sinh(ax)
a

p2 − a2

7 cosh(ax)
p

p2 − a2

8 ln x − 1

p
(ln p+ C) C = 0.5772 . . .

is the Euler constant

9 sin(ax)
a

p2 + a2

10 cos(ax)
p

p2 + a2

11 erfc

(
a

2
√
x

)
1

p
exp

(
−a√p

)
a ≥ 0

12 J0(ax)
1√

p2 + a2
J0(x) is the Bessel function

◮ Inverse transforms of rational functions.

Consider the important case in which the transform is a rational function of the form

f̃(p) =
R(p)

Q(p)
, (4.3.2.1)

where Q(p) and R(p) are polynomials in the variable p and the degree of Q(p) exceeds

that of R(p).
Assume that the zeros of the denominator are simple, i.e.,

Q(p) ≡ const (p− λ1)(p − λ2) . . . (p − λn).

Then the inverse transform can be determined by the formula

f(x) =

n∑

k=1

R(λk)

Q′(λk)
exp(λkx), (4.3.2.2)

where the primes denote the derivatives.

If Q(p) has multiple zeros, i.e.,

Q(p) ≡ const (p− λ1)s1(p − λ2)s2 . . . (p− λm)sm ,

then

f(x) =

m∑

k=1

1

(sk − 1)!
lim
p→sk

dsk−1

dpsk−1

[
(p− λk)sk f̃(p)epx

]
. (4.3.2.3)
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4.3. Laplace Transform and the Laplace Integral. Applications to Linear ODEs 207

Example 4.3. The transform

f̃(p) =
b

p2 − a2 (a, b real numbers)

can be represented as the fraction (4.3.2.1) with R(p) = b and Q(p) = (p − a)(p + a). The

denominatorQ(p) has two simple roots, λ1 = a and λ2 = −a. Using formula (4.3.2.2) with n = 2
and Q′(p) = 2p, we obtain the inverse transform in the form

f(x) =
b

2a
eax − b

2a
e−ax =

b

a
sinh(ax).

Example 4.4. The transform

f̃(p) =
b

p2 + a2
(a, b real numbers)

can be written as the fraction (4.3.2.1) with R(p) = b and Q(p) = (p− ia)(p+ ia), i2 = −1. The

denominator Q(p) has two simple pure imaginary roots, λ1 = ia and λ2 = −ia. Using formula

(4.3.2.2) with n = 2, we find the inverse transform:

f(x)=
b

2ia
eiax− b

2ia
e−iax=− bi

2a

[
cos(ax)+i sin(ax)

]
+
bi

2a

[
cos(ax)−i sin(ax)

]
=
b

a
sin(ax).

Example 4.5. The transform

f̃(p) = ap−n,

where n is a positive integer, can be written as the fraction (.2.2.1) with R(p) = a and Q(p) = pn.

The denominatorQ(p) has one root of multiplicity n, λ1 = 0. By formula (.2.2.3) with m = 1 and

s1 = n, we find the inverse transform:

f(x) =
a

(n− 1)!
xn−1.

◆ Detailed tables of inverse Laplace transforms can be found in Section S3.2.

4.3.3 Limit Theorems. Representation of Inverse Transforms
as Convergent Series and Asymptotic Expansions

◮ Limit theorems.

THEOREM 1. Let 0 ≤ x <∞ and f̃(p) = L
{
f(x)

}
be the Laplace transform of f(x). If

a limit of f(x) as x→ 0 exists, then

lim
x→0

f(x) = lim
p→∞

[
pf̃(p)

]
.

THEOREM 2. If a limit of f(x) as x→∞ exists, then

lim
x→∞

f(x) = lim
p→0

[
pf̃(p)

]
.

◮ Representation of inverse transforms as convergent series.

THEOREM 1. Suppose the transform f̃(p) can be expanded into series in negative powers

of p,

f̃(p) =
∞∑

n=1

an
pn
,
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convergent for |p| > R, where R is an arbitrary positive number; note that the transform

tends to zero as |p| → ∞. Then the inverse transform can be obtained by the formula

f(x) =

∞∑

n=1

an
(n − 1)!

xn−1,

where the series on the right-hand side is convergent for all x.

THEOREM 2. Suppose the transform f̃(p), |p| > R, is represented by an absolutely

convergent series,

f̃(p) =

∞∑

n=0

an
pλn

, (4.3.3.1)

where {λn} is any positive increasing sequence, 0<λ0<λ1< · · ·→∞. Then it is possible

to proceed termwise from series (4.3.3.1) to the following inverse transform series:

f(x) =

∞∑

n=0

an
Γ(λn)

xλn−1, (4.3.3.2)

where Γ(λ) is the Gamma function. Series (4.3.3.2) is convergent for all real and complex

values of x other than zero (if λ0 ≥ 1, the series is convergent for all x).

◮ Representation of inverse transforms as asymptotic expansions as x → ∞.

1◦. Let p = p0 be a singular point of the Laplace transform f̃(p) with the greatest real part

(it is assumed there is only one such point). If f̃(p) can be expanded near p = p0 into an

absolutely convergent series,

f̃(p) =

∞∑

n=0

cn(p− p0)λn (λ0 < λ1 < · · · → ∞) (4.3.3.3)

with arbitrary λn, then the inverse transform f(x) can be expressed in the form of the

asymptotic expansion

f(x) ∼ ep0x
∞∑

n=0

cn
Γ(−λn)

x−λn−1 as x→∞. (4.3.3.4)

The terms corresponding to nonnegative integer λn must be omitted from the summation,

since Γ(0) = Γ(−1) = Γ(−2) = · · · =∞.

2◦. If the transform f̃(p) has several singular points, p1, . . . , pm, with the same greatest

real part, Re p1 = · · · = Re pm, then expansions of the form (4.3.3.3) should be obtained

for each of these points and the resulting expressions must be added together.

◮ Post–Widder formula.

In applications, one can find f(x) if the Laplace transform f̃(t) on the real semiaxis is

known for t = p ≥ 0. To this end, one uses the Post–Widder formula

f(x) = lim
n→∞

[
(−1)n
n!

(n
x

)n+1
f̃
(n)
t

(n
x

)]
. (4.3.3.5)

Approximate inversion formulas are obtained by taking sufficiently large positive integer n
in (4.3.3.5) instead of passing to the limit.
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4.3. Laplace Transform and the Laplace Integral. Applications to Linear ODEs 209

4.3.4 Solution of the Cauchy Problem for Constant-Coefficient Linear
ODEs. Applications to Integro-Differential Equations

◮ Cauchy problem for constant-coefficient linear ODEs.

Consider the Cauchy problem for equation (4.1.2.1) with arbitrary initial conditions

y(0) = y0, y′x(0) = y1, . . . , y(n−1)
x (0) = yn−1, (4.3.4.1)

where y0, y1, . . . , yn−1 are given constants.

Problem (4.1.2.1), (4.3.4.1) can be solved using the Laplace transform based on the

formulas (for details, see Section 4.3.1)

ỹ(p) = L
{
y(x)

}
, f̃(p) = L

{
f(x)

}
, where L

{
f(x)

}
≡
∫ ∞

0
e−pxf(x) dx.

To this end, let us multiply equation (4.1.2.1) by e−px and then integrate with respect to x
from zero to infinity. Taking into account the differentiation rule

L
{
y(n)x (x)

}
= pnỹ(p)−

n∑

k=1

pn−ky(k−1)
x (+0)

and the initial conditions (4.3.4.1), we arrive at a linear algebraic equation for the trans-

form ỹ(p):

P (p)ỹ(p)−Q(p) = f̃(p), (4.3.4.2)

where

P (p) = pn + an−1p
n−1 + · · · + a1p+ a0, Q(p) = bn−1p

n−1 + · · ·+ b1p+ b0,

bk = yn−k−1 + an−1yn−k−2 + · · · + ak+2y1 + ak+1y0, k = 0, 1, . . . , n− 1.

The polynomial P (p) coincides with the characteristic polynomial (4.1.1.2) at λ = p.

The solution of equation (4.3.4.2) is given by the formula

ỹ(p) =
f̃(p) +Q(p)

P̃ (p)
. (4.3.4.3)

On applying the Laplace inversion formula (4.3.1.2) to (4.3.4.3), we obtain a solution to

problem (4.1.2.1), (4.3.4.1) in the form

y(x) =
1

2πi

∫ c+i∞

c−i∞

f̃(p) +Q(p)

P̃ (p)
epx dp. (4.3.4.4)

Since the transform ỹ(p) (4.3.4.3) is a rational function, the inverse Laplace transform

(4.3.4.4) can be obtained using the formulas from Section 4.3.2 or the tables of Sec-

tion S3.2.

Remark 4.3. In practice, the solution method for the Cauchy problem based on the Laplace

transform leads to the solution faster than the direct application of general formulas like (4.1.2.2),

where one has to determine the coefficients C1, . . . , Cn.
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Example 4.6. Consider the following Cauchy problem for a homogeneous fourth-order equa-

tion:

y′′′′xxxx + a4y = 0; y(0) = y′x(0) = y′′′xxx(0) = 0, y′′xx(0) = b.

Using the Laplace transform reduces this problem to a linear algebraic equation for the ỹ(p):
(p4 + a4)ỹ(p)− bp = 0. It follows that

ỹ(p) =
bp

p4 + a4
.

In order to invert this expression, let us use the table of inverse Laplace transforms (see Sec-

tion S3.2.2, row 52) and take into account that a constant multiplier can be taken outside the trans-

form operator to obtain the solution to the original Cauchy problem in the form

y(x) =
b

a2
sin
( ax√

2

)
sinh

( ax√
2

)
.

◮ Cauchy problem for integro-differential equations.

The Laplace transform can also be effective in solving some linear integro-differential

equations. This is illustrated below with a specific example:

Example 4.7. Consider the Cauchy problem for the linear integro-differential equation

dy

dx
+

∫ x

0

K(x− t)y(t) dt = f(x) (0 ≤ x <∞) (4.3.4.5)

with the initial condition

y = a at x = 0. (4.3.4.6)

Multiply equation (4.3.4.5) by e−px and then integrate with respect to x from zero to infinity.

Using properties 7 and 12 of the Laplace transform (Table 4.2) and taking into account the initial

condition (4.3.4.6), we obtain a linear algebraic equation for the transform ỹ(p):

pỹ(p)− a+ K̃(p)ỹ(p) = f̃(p).

It follows that

ỹ(p) =
f̃(p) + a

p+ K̃(p)
.

By the inversion formula (4.3.1.2), the solution to the original problem (4.3.4.5)–(4.3.4.6) is found

in the form

y(x) =
1

2πi

∫ c+i∞

c−i∞

f̃(p) + a

p+ K̃(p)
epx dp, i2 = −1. (4.3.4.7)

Consider the special case of a = 0 and K(x) = cos(bx). From row 10 of Table 4.3 it follows

that K̃(p) =
p

p2 + b2
. Rearrange the integrand of (4.3.4.7):

f̃(p)

p+ K̃(p)
=

p2 + b2

p(p2 + b2 + 1)
f̃(p) =

(
1

p
− 1

p(p2 + b2 + 1)

)
f̃(p).

In order to invert this expression, let us use the convolution theorem (see formula 16 of Sec-

tion S3.2.1) as well as formulas 1 and 28 for the inversion of rational functions, Section S3.2.2.

As a result, we arrive at the solution in the form

y(x) =

∫ x

0

b2 + cos
(
t
√
b2 + 1

)

b2 + 1
f(x− t) dt.
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4.3. Laplace Transform and the Laplace Integral. Applications to Linear ODEs 211

4.3.5 Solution of Linear Equations with Polynomial Coefficients
Using the Laplace Transform

◮ Solution of equations using the Laplace transform. General description.

1◦. Some classes of equations (4.2.1.1) or (4.2.2.1) with polynomial coefficients

fk(x) =

sk∑

m=0

akmx
m

may be solved using the Laplace transform (see Sections 4.3.1, 4.3.2, and S3.1). To this

end, one uses the following formula for the Laplace transform of the product of a power

function and a derivative of the unknown function:

L
{
xmy(n)x (x)

}
= (−1)m dm

dpm

[
pnỹ(p)−

n∑

k=1

pn−ky(k−1)
x (+0)

]
. (4.3.5.1)

The right-hand side contains initial data y
(m)
x (+0), m = 0, 1, . . . , n − 1 (specified in the

Cauchy problem). As a result, one arrives at a linear ordinary differential equation, with

respect to p, for the transform ỹ(p); the order of this equation is equal to max
1≤k≤n

{sk}, the

highest degree of the polynomials that determine the equation coefficients. In some cases,

the equation for ỹ(p) turns out to be simpler than the initial equation for y(x) and can be

solved in closed form. The desired function y(x) is found by inverting the transform ỹ(p)
using the formulas from Section 4.3.2 or the tables from Section S3.2.

◮ Application to the Laplace equation.

Consider the Laplace equation

(an+bnx)y
(n)
x +(an−1+bn−1x)y

(n−1)
x + · · ·+(a1+b1x)y

′
x+(a0+b0x)y=0, (4.3.5.2)

whose coefficients are linear functions of the independent variable x. The application of

the Laplace transform, in view of formulas (4.3.5.1), brings it to a linear first-order ordinary

differential equation for the transform ỹ(p).

Example 4.8. Consider a special case of equation (4.3.5.2):

xy′′xx + y′x + axy = 0. (4.3.5.3)

Denote y(0)=y0 and y′x(0)=y1. Let us apply the Laplace transform to this equation using formulas

(4.3.5.1). On rearrangement, we obtain a linear first-order equation for ỹ(p):

−(p2ỹ − y0p− y1)′p + (pỹ − y0)− aỹ ′
p = 0 =⇒ (p2 + a)ỹ ′

p + pỹ = 0.

Its general solution is expressed as

ỹ =
C√
p2 + a

, (4.3.5.4)

where C is an arbitrary constant. Applying the inverse Laplace transform to (4.3.5.4) and taking

into account formulas 19 and 20 from Section S3.2.3, we find a solution to the original equation

(4.3.5.3):

y(x) =

{
CJ0(x

√
a ) if a > 0,

CI0(x
√
−a ) if a < 0,

(4.3.5.5)
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where J0(x) is the Bessel function of the first kind and I0(x) is the modified Bessel function of the

first kind.

In this case, only one solution (4.3.5.5) has been obtained. This is due to the fact that the other

solution goes to infinity as x→ 0, and hence formula (4.3.5.1) cannot be applied to it; this formula

is only valid for finite initial values of the function and its derivatives.

4.3.6 Solution of Linear Equations with Polynomial Coefficients
Using the Laplace Integral

◮ Solution of equations using the Laplace integral. General description.

Solutions to linear differential equations with polynomial coefficients can sometimes be

represented as a Laplace integral in the form

y(x) =

∫

K
epxu(p) dp. (4.3.6.1)

For now, no assumptions are made about the domain of integration K; it could be a segment

of the real axis or a curve in the complex plane.

Let us exemplify the usage of the Laplace integral (4.3.6.1) by considering equation

(4.3.5.2). It follows from (4.3.6.1) that

y(k)x (x) =

∫

K
epxpku(p) dp,

xy(k)x (x) =

∫

K
xepxpku(p) dp =

[
epxpku(p)

]
K
−
∫

K
epx

d

dp

[
pku(p)

]
dp.

Substituting these expressions into (4.3.5.2) yields

∫

K
epx
{ n∑

k=0

akp
ku(p)−

n∑

k=0

bk
d

dp

[
pku(p)

]}
dp+

n∑

k=0

bk

[
epxpku(p)

]
K
= 0. (4.3.6.2)

This equation is satisfied if the expression in braces vanishes, thus resulting in a linear

first-order ordinary differential equation for u(p):

u(p)

n∑

k=0

akp
k − d

dp

[
u(p)

n∑

k=0

bkp
k
]
= 0. (4.3.6.3)

The remaining term in (4.3.6.2) must also vanish:

[ n∑

k=0

bke
pxpku(p)

]
K
= 0. (4.3.6.4)

This condition can be met by appropriately selecting the path of integration K. Consider

the example below to illustrate the aforesaid.

◮ Application to the second-order Laplace equation of the special form.

Consider the linear variable-coefficient second-order equation

xy′′xx + (x+ a+ b)y′x + ay = 0 (a > 0, b > 0), (4.3.6.5)
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4.4. Asymptotic Solutions of Linear Equations 213

that is a special case of equation (4.3.5.2) with n=2, a2=0, a1=a+b, a0=a, b2= b1=1,

and b0 = 0. On substituting these values into (4.3.6.3), we arrive at an equation for u(p):

p(p+ 1)u′p − [(a+ b− 2)p + a− 1]u = 0.

Its solution is given by

u(p) = pa−1(p + 1)b−1. (4.3.6.6)

It follows from condition (4.3.6.4), in view of formula (4.3.6.6), that

[
epx(p+ p2)u(p)

]β
α
=
[
epxpa(p+ 1)b

]β
α
= 0, (4.3.6.7)

where a segment of the real axis, K = [α, β], has been chosen to be the path of integration.

Condition (4.3.6.7) is satisfied if we set α = −1 and β = 0. Consequently, one of the

solutions to equation (4.3.6.5) has the form

y(x) =

∫ 0

−1
epxpa−1(p+ 1)b−1 dp. (4.3.6.8)

Remark 4.4. If a is noninteger, it is necessary to separate the real and imaginary parts in

(4.3.6.8) to obtain real solutions.

Remark 4.5. By setting α = −∞ and β = 0 in (4.3.6.7), one can find a second solution to

equation (4.3.6.5) (at least for x > 0).

⊙ Literature for Section 4.3: G. Doetsch (1950, 1956, 1974), H. Bateman and A. Erdélyi (1954), G. M. Mur-

phy (1960), V. A. Ditkin and A. P. Prudnikov (1965), J. W. Miles (1971), F. Oberhettinger and L. Badii (1973),

E. Kamke (1977), W. R. LePage (1980), R. Bellman and R. Roth (1984), A. P. Prudnikov, Yu. A. Brychkov,

and O. I. Marichev (1992a,b), M. Ya. Antimirov (1993), D. Zwillinger (1997), G. A. Korn and T. M. Korn

(2000), A. D. Polyanin and V. F. Zaitsev (2003), A. D. Polyanin and A. V. Manzhirov (2007).

4.4 Asymptotic Solutions of Linear Equations

This section presents asymptotic solutions, as ε → 0 (ε > 0), of some higher-order linear

ordinary differential equations containing arbitrary functions (sufficiently smooth), with

the independent variable being real.

4.4.1 Fourth-Order Linear Differential Equations

◮ Binomial equation.

1◦. Consider the equation

ε4y′′′′xxxx − f(x)y = 0

on a closed interval a≤x≤ b. With the condition f > 0, the leading terms of the asymptotic

expansions of the fundamental system of solutions, as ε→ 0, are given by the formulas

y1 = [f(x)]−3/8 exp

{
− 1

ε

∫
[f(x)]1/4 dx

}
, y2 = [f(x)]−3/8 exp

{
1

ε

∫
[f(x)]1/4 dx

}
,

y3 = [f(x)]−3/8 cos

{
1

ε

∫
[f(x)]1/4 dx

}
, y4 = [f(x)]−3/8 sin

{
1

ε

∫
[f(x)]1/4 dx

}
.
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◮ Trinomial equation.

Now consider the “biquadratic” equation

ε4y′′′′xxxx − 2ε2g(x)y′′xx − f(x)y = 0. (4.4.1.1)

Introduce the notation

D(x) = [g(x)]2 + f(x).

In the range where the conditions f(x) 6= 0 and D(x) 6= 0 are satisfied, the leading terms

of the asymptotic expansions of the fundamental system of solutions of equation (4.4.1.1)

are described by the formulas

yk = [λk(x)]
−1/2[D(x)]−1/4 exp

{
1

ε

∫
λk(x) dx−

1

2

∫
[λk(x)]

′
x√

D(x)
dx

}
; k= 1, 2, 3, 4,

where

λ1(x) =
√
g(x) +

√
D(x), λ2(x) = −

√
g(x) +

√
D(x),

λ3(x) =
√
g(x) −

√
D(x), λ4(x) = −

√
g(x) −

√
D(x).

4.4.2 Higher-Order Linear Differential Equations

◮ Binomial equation.

Consider an equation of the form

εny(n)x − f(x)y = 0

on a closed interval a≤x≤ b. Assume that f 6=0. Then the leading terms of the asymptotic

expansions of the fundamental system of solutions, as ε→ 0, are given by

ym =
[
f(x)

]− 1
2 + 1

2n exp

{
ωm

ε

∫ [
f(x)

] 1
n dx

}[
1 +O(ε)

]
,

where ω1, ω2, . . . , ωn are roots of the equation ωn = 1:

ωm = cos
( 2πm

n

)
+ i sin

( 2πm
n

)
, m = 1, 2, . . . , n.

◮ More complex equation.

Now consider an equation of the form

εny(n)x + εn−1fn−1(x)y
(n−1)
x + · · ·+ εf1(x)y

′
x + f0(x)y = 0 (4.4.2.1)

on a closed interval a ≤ x ≤ b. Let λm = λm(x) (m = 1, 2, . . . , n) be the roots of the

characteristic equation

P (x, λ) ≡ λn + fn−1(x)λ
n−1 + · · · + f1(x)λ+ f0(x) = 0.

Let all the roots of the characteristic equation be different on the interval a ≤ x ≤ b, i.e.,

the conditions λm(x) 6= λk(x), m 6= k, are satisfied, which is equivalent to the fulfillment
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of the conditions Pλ(x, λm) 6= 0. Then the leading terms of the asymptotic expansions of

the fundamental system of solutions of equation (4.4.2.1), as ε→ 0, are given by

ym = exp

{
1

ε

∫
λm(x) dx − 1

2

∫
[λm(x)]′x

Pλλ

(
x, λm(x)

)

Pλ

(
x, λm(x)

) dx

}
,

where

Pλ(x, λ)≡
∂P

∂λ
=nλn−1+(n−1)fn−1(x)λ

n−2+· · ·+2λf2(x)+f1(x),

Pλλ(x, λ)≡
∂2P

∂λ2
=n(n−1)λn−2+(n−1)(n−2)fn−1(x)λ

n−3+· · ·+6λf3(x)+2f2(x).

⊙ Literature for Section 4.4: W. Wasov (1965), M. V. Fedoryuk (1993), A. D. Polyanin and V. F. Zaitsev

(2003).

4.5 Collocation Method

4.5.1 Statement of the Problem. Approximate Solution

1◦. Consider the linear boundary value problem defined by the equation

Ly ≡ y(n)x +fn−1(x)y
(n−1)
x + · · ·+f1(x)y′x+f0(x)y = g(x), −1<x< 1, (4.5.1.1)

and the boundary conditions

n−1∑

j=0

[
αijy

(j)
x (−1) + βijy

(j)
x (1)

]
= 0, i = 1, . . . , n. (4.5.1.2)

2◦. We seek an approximate solution to problem (4.5.1.1)–(4.5.1.2) in the form

ym(x) = A1ϕ1(x) +A2ϕ2(x) + · · ·+Amϕm(x),

where ϕk(x) is a polynomial of degree n + k − 1 that satisfies the boundary conditions

(4.5.1.2). The coefficients Ak are determined by the linear system of algebraic equations
[
Lym − g(x)

]
x=xi

= 0, i = 1, . . . ,m, (4.5.1.3)

with Chebyshev nodes xi = cos
( 2i− 1

2m
π
)

, i = 1, . . . , m.

4.5.2 Convergence Theorem

THEOREM. Let the functions fj(x) (j = 0, . . . , n − 1) and g(x) be continuous on the

interval [−1, 1] and let the boundary value problem (4.5.1.1)–(4.5.1.2) have a unique so-

lution, y(x). Then there exists an m0 such that system (4.5.1.3) is uniquely solvable for

m ≥ m0; and the limit relations

max
−1≤x≤1

∣∣y(k)m (x)− y(k)(x)
∣∣ ≤ cEm

(
y(n)

)
→ 0, k = 0, 1, . . . , n− 1;

{∫ 1

−1

∣∣y(n)m (x)− y(n)(x)
∣∣2

√
1− x2

dx

}1/2
≤ cEm

(
y(n)

)
→ 0
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hold for m→∞. Here c = const and

Em(v) = min
b0,...,bm−1

max
−1≤x≤1

∣∣∣∣v(x)−
m−1∑

j=0

bjx
j

∣∣∣∣.

Remark 4.6. A similar result holds true if the nodes are roots of some orthogonal polynomials

with some weight function. If the nodes are equidistant, the method diverges.

⊙ Literature for Section 4.5: R. D. Russell and L. F. Shampine (1972), C. de Boor and B. Swartz (1993),

Mathematical Encyclopedia (1979, p. 951), A. D. Polyanin and A. V. Manzhirov (2007).


