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LESS IS MORE 

FOR BAYESIANS, TOO
Gregory Wheeler

Lore has it that a fundamental principle of Bayesian rationality is for decision makers to never 
turn down the offer of free information. Cost-​free information can only help you, never hurt 
you, and in the worst case will leave you at status quo ante. Purported exceptions to this prin-
ciple are no exceptions at all, but instead involve a hidden cost to learning. Make those costs 
plain and the problem you face is one of balancing the quality of a choice against the costs to 
you of carrying it out, a trade-​off that Bayesian methods are ideally suited to solve.

This piece of Bayesian lore, that rationality compels you to never turn down free infor-
mation, is sometimes called Good’s Principle, after I.  J. Good’s concise formalization of the 
reasoning behind it (Good, 1967). But the argument goes back to the beginning of modern 
Bayesian probability theory, with remarks by Ramsey (1931), an argument by Savage (1972), 
the formalization of a key piece of it by Raiffa and Schlaiffer (1961), followed thereafter by 
assertions in textbooks, starting with Lindley (1965). Put a bit more carefully, Good’s principle 
recommends to delay making a terminal decision between alternative courses of action if there 
is an opportunity to learn, at zero cost, the outcome of an experiment relevant to the decision 
(Pedersen and Wheeler, 2015). This will put more carefully still in a further section in this 
chapter.

Objections to Good’s principle have surfaced in the last half-​century, some of which are well 
known by now but others less so, forming part of a rich discussion of the value of information 
to rational decision making (Wakker, 1988; Machina, 1989; Seidenfeld, 1994; Grünwald and 
Halpern, 2004; Gigerenzer and Brighton, 2009; Siniscalchi, 2011; Hill, 2013; Pedersen and 
Wheeler, 2015). Since then, a picture has emerged about the value of information that is more 
restricted and more nuanced than Good’s principle suggests, suggesting a revision to Bayesian 
lore. For even in highly idealized settings, ignorance can be a virtue. Sometimes less is more 
for Bayesians, too.

Asymmetric information in strategic games

The first dent to this folklore comes from the theory of games, where some strategic interactions 
can result in a player being better off having less information. George Akerlof ’s study of market 
failures created by asymmetric information is a classic example (Akerlof, 1970). Adverse selection 
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occurs when one side of a trade has less information than the other side and withdraws from 
trading from fear of being unfairly taken advantage of by the more informed party. Akerlof 
offered the used car market as an example where adverse selection occurs, a particularly apt 
example in 1970. A used car salesman will know which cars on the lot are bad and which are 
good, knowledge an ordinary consumer will not have. But the consumer will know that the 
dealer knows which car is of which quality type and recognize the upper hand the dealer has in 
any trade. Afraid of paying a good-​car price and driving home in a bad one, the customer may 
choose not to buy any car at all. The reasoning for this idealized single transaction generalizes, 
resulting in a market failure for used cars where nobody is willing to pay more than the going 
rate for a bad car.

Used car dealers have overcome their adverse selection problem by certifying the quality of 
used cars, and backing those claims with a warranty, thereby leveling the information playing 
field between dealers and customers by letting customers in on what dealers know about the 
quality of the cars they sell. (Making better cars has helped, too.) Yet, since the problem here 
is asymmetrical information, this isn’t the only way to restore the market. Rather than making 
consumers as informed as dealers, another option is to make dealers as ignorant as consumers.

The following example, due to Martin Osborne, illustrates the ignorance option (Osborne 
2003, 9.3). Imagine there are two states of the world, ω1 and ω2—​which could be understood 
to correspond to the state in which a car is more likely to be good than bad and vice versa, 
for instance. Suppose there are two Bayesians, Player 1 and Player 2, but neither player knows 
which state of the world they are in. Both are ignorant, so they both assign a probability of 
one-​half to ω1 and one-​half to ω2. Figure 31.1 gives the payoff tables for Player 1 and Player 
2, where the material difference to each player from their uncertainty over which state they 
are in, ω1 or ω2, is reflected in the last two columns of the respective payoff tables. Given this 
setup, with both players ignorant of the state, the strategy L is Player 2’s unique best response to 
every strategy of Player 1, which yields Player 2 the expected payoff of 2–​2(1–​ε)p, whereas M 
and R both yield 3

2
 – –  3

2
 –(1-​ε)p where p is the probability Player 1 assigns to T. Player 1’s unique 

best response to L is B. Therefore, (B,L) is the unique Nash equilibrium of the game, yielding 
each player a payoff of 2.

Now imagine that instead of both players being ignorant of which state they are in, exactly 
one of the players is informed of the state. Specifically, suppose Player 2 is informed of the state 

Player 2
L M R

Player 1
T (1,2ε) (1,0) (1,3ε)
B (2,2) (0,0) (0,3)

State ω1

Player 2
L M R

Player 1
T (1,2ε) (1,3ε) (1,0)
B (2,2) (0,3) (0,0)

State ω2

Figure 31.1  Payoffs to Players 1 and 2 in states ω1 and ω2 with 0 ≤ ϵ ≤ ½

Source: Osborne (2003).
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whereas Player 1 remains ignorant but nevertheless knows that Player 2 is informed. In this 
game (T, (R, M)) is the unique Nash equilibrium yielding to her at most a payoff of 1.5. Why? 
Choosing R is Player 2’s best response in state ω1 and her worst response in ω2. Similarly, M is 
Player 2’s best response in ω2 and worst in ω1. Player 1 knows this too, knows that Player 2 is 
informed of the state, thus knows that Player 2 will never choose L. With column L removed 
from consideration, Player 1’s best response to (M,R) is T.

Despite her information advantage over Player 1, Player 2’s payoff in this second game is 3ϵ 
in each state, which is at most 1.5. Thus, Player 2 is worse off learning the state than remaining 
ignorant. Given the choice between the original game, where both players are ignorant, and 
the second game in which Player 1 remains ignorant but Player 2 is informed, it is rational for 
Player 2 to choose to remain ignorant, even if the information about the state is offered to her 
for free.

Akerlof ’s and Osborne’s examples are part of a broader collection of counter-​intuitive results 
that can arise when the rational choice of one player changes the probability assessments of 
another about which state will occur. In this case, the negative value of information stems from 
act-​state dependence of Player 1’s strategic response to Player 2’s informed choice. Osborne seems 
to think that the prospect of information having negative value appears only in games, not in 
decision problems:

A decision-​maker in a single-​person decision problem cannot be worse off if she has 
more information: if she wishes, she can ignore the information. In a game the same 
is not true: if a player has more information and the other players know that she has 
more information, then she may be worse off.

Osborne, 2003, p. 281

This position that Osborne expresses, that Good’s principle governs single-​person decision 
making but not strategic decision making (i.e., games), remains something of a received view 
on the possibility of negative-​valued information. Over the last half-​century, decision and 
game theorists have become keenly aware of the crucial role that act-​state independence plays 
in standard decision theory, aided by a slew of puzzles and aberrant behavior in examples 
that are found upon close inspection to depend on violations of this independence condition 
(Kadane, Seidenfeld, and Schervish, 2008). Act-​state independence is the first thing to go in 
the theory of games, however, as the whole point of strategic decision making is to factor in 
the consequences to you from the rational acts of others. So, one might conclude, to avoid the 
specter of negative-​valued information, restrict the scope of Good’s principle to single-​person 
decision problems. That, in a nutshell, is the received view on Good’s principle. The received 
view is wrong, however.

Good by Savage

To see why single-​person decision-​making is not immune to negative-​valued information, let 
us consider more carefully Savage’s argument that it is immune. To be clear at the outset, our 
analysis will not uncover a mathematical mistake or faulty theorem. Rather, our aim is to draw 
attention to another important type of qualification to Good’s principle.

Good’s principle appears in Savage’s discussion in Foundations of Statistics of the differences 
between a basic decision problem and a derived decision problem. A basic decision problem is 
one in which an agent is to choose a basic action from among a collection he judges to be avail-
able for choice. A derived decision problem is one in which the agent is to choose from the same 
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collection of basic actions but only after considering the associated conditional expected util-
ities for a basic action given each possible outcome of some experiment. Given the assumption 
that you wish to maximize your expected utility, why should you prefer a derived decision 
problem over a basic decision problem? Because you cannot be made worse off in expectation 
and may well come out better. “It is almost obvious,” Savage remarks,

that the value of a derived problem cannot be less, and typically is greater, than the 
value of the basic problem from which it is derived. After all, any basic act is among 
the derived acts, so that any expected utility that can be attained by deciding on a 
basic act can be attained by deciding on the same basic act considered as a derived act. 
In short, the person is free to ignore the observation. That obvious fact is the theory’s 
expression of the commonplace that knowledge is not disadvantageous.

Savage, 1972, p. 107

Good later showed that Carnap’s principle of total evidence (Carnap, 1947) follows as a con-
sequence of the principle to maximize expected utility, so long as the costs of acquiring infor-
mation are negligible.

[I]‌n expectation, it pays to take into account further evidence, provided that the cost 
of collecting and using this evidence, although positive, can be ignored. In particular, 
we should use all the evidence already available, provided that the cost of doing so is 
negligible. With this proviso then, the principle of total evidence follows from the 
principle of rationality.

Good, 1967, p. 319

Our discussion in the next two sections will be helped along by introducing a bit of formalism 
now to set up Savage’s version of Good’s principle.

Following (Pedersen and Wheeler, 2015), consider an illustration of Good’s principle in 
Figure 31.2. Suppose that at some time t1 you are to face a choice, A, among two courses of 
action, a1 or a2. Prior to this choice you face a decision, O, at some time t0 prior to t1, between 
o1, the basic decision of choosing a1 or a2 at time t1, and o2, the derived decision of choosing a1 or 
a2 at some later time t2 after you have observed, at no cost, the outcome of an experiment ε, 
with outcomes e1 or e2.1

t0

t1

t2

O

A

E

A

σ(a1,ωi) σ(a2,ωi)

A

σ(a1,ωi) σ(a2,ωi)

σ(a1,ωi)

a1

σ(a2,ωi)

a2

o1

o2

e1 e2

Figure 31.2  Illustration of Good’s principle
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Choice, being governed here by dominance reasoning, comes after ruling out those options 
for choice that are worse than all others. Those acts that survive the cull are admissible for 
choice. Suppose that your judgments of admissibility can be represented in terms of subjective 
expected utility maximization with respect to a real-​valued expectation p[⋅] agreeing with a 
real-​valued probability function p defined on a Boolean algebra A over the set of states Ω and 
a real-​valued utility function u defined over the set of consequences.2 Then, at time t0 you 
confront a decision problem O = {o1,o2}. If you implement option o1 at time t0, then at time t1 
you will face a decision problem A = {a1,,a2} without observing the outcome of experiment ε. 
If you implement option o2 at time t0, then at time t2 you will face the same decision problem 
A after observing the outcome of experiment ε.

Abusing notation, let ‘o1’ also stand for the event of facing the decision problem A after 
implementing option o1 at t0. (Context should make clear which use of ‘o1’ we intend.) In 
a similar manner, let ‘o2, ε =  ei’ stand for the event of facing the decision problem A  after 
implementing o2 and observing the outcome ei of experiment ε. The choice set c of admissible 
options from A for choice given each alternative, written c A|o1( ) and c c A o ei| ,2 ε =( )  for 
options o1 and o2, respectively, may be defined by Equations (31.1) and (31.2):

	 c A o u a p d o
a A

p o| arg max , ( | )(| )1 11
( ) = ( )( ) ∈

⋅ σ ω 	 (31.1) 

 	 c A o e o e u a p d o ei
a A

p i i| , arg max ( | , ) , ( | ,2 2 2ε ε σ ω ε=( ) = ⋅ = ( ) =( )∈
   	 (31.2)

where ∘ denotes functional composition.
Good’s principle assumes that at t0 you are certain, regardless of whether or not you choose 

to observe the outcome of experiment ε, that you will choose an option a ∈ A that maximizes 
your expected utility. This assumption is codified in how admissible choices are determined for 
each option o1 and o2 in Equations (31.1) and (31.2), respectively. A second assumption is that 
your preferences over consequences remain unchanged. A third assumption is that your beliefs 
given hypotheses accord with Bayesian conditionalization. With all of this in place, Good’s 
principle states that your expectation of (1) your maximum conditional expected utility of choosing 
from A under option o1 is less than or equal to (2) your maximum conditional expected utility under 
o2 of choosing from A given experiment ε. Your expectation of (2) is strictly greater than (1) unless 
there is an action from A that maximizes conditional expected utility from A regardless of the 
experimental outcome of ε. In other words, unless the experiment is irrelevant (i.e., probabil-
istically independent), then cO = {o2}.

Uncertainty and imprecision

According to the canonical theory of synchronic decision making under risk, a perfectly rational 
person is one whose comparative assessments of a set of consequences satisfies the recommen-
dation to maximize expected utility. What underpins this claim is the assumption that a person’s 
qualitative comparative judgments of those consequences (aka, preferences) are structured in a 
particular way (satisfy specific axioms) to admit a mathematical representation in terms of inequal-
ities of mathematical expectations, ordered from worst to best on the real number line. This 
structuring of preference through qualitative axioms to admit a numerical representation is the 
subject of expected utility theory (Wheeler, 2018, §1.1).
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Savage’s theory tells us how to represent preference in terms of some pair of numer-
ical probability and numerical utility functions, an ingenious extension of prior work that 
showed how to quantify each piece separately, principally von Neumann and Morgenstern’s 
numerical representation of utility, which presupposes a numerical probability function (von 
Neumann and Morgenstern, 1944); and de Finetti’s numerical representation of probability, 
which presupposes a cardinal utility function (de Finetti, 1974). Let’s focus here on probability 
assessments, which for Bayesians are understood as a person’s partial beliefs.

Consider what it means for a person to have a partial belief in the proposition, L, expressing 
that a particular car is a lemon. What does it mean for a person to have a partial of belief of 
0.40 that L is true? According to the Ramsey-​de Finetti conception of partial belief, this 
means the person is indifferent between two sorts of hypothetical transactions. The first hypo-
thetical transaction calls on him to buy a contract for €0.40 that pays him €1 if the car is a 
lemon, whereas the second hypothetical transaction calls on him to sell such a contract for the 
same price. Put differently, the first type requires the person to surrender a sure 40 cents for 
the promise of 1 Euro on the event of A occurring and risk receiving 0 if L does not occur. 
The second type of transaction requires the person to accept payment of the sure reward of 
40 cents in exchange for agreeing to risk paying back 1 Euro on the event of L occurring and 
paying out nothing—​in terms of this contract—​otherwise. The choice of price is up to the 
person, the utility of Euros is assumed to be linear, and the stakes are presumed to be small 
enough to not bankrupt the person yet large enough for him to care. (De Finetti was a thor-
oughly pragmatic fellow, a point sometimes lost on his critics.) The price of 40 cents is fair 
to this person just in case he is indifferent between buying and selling contracts on L at 40 
cents. A person is rational just in case there is no possible way to put together a finite set of 
buy and sell positions on that person’s announced fair prices to cause him a sure loss, a return 
to that person of a value less than zero no matter how the uncertain events in those contracts 
are resolved.

We rehearse this canonical account in order to introduce a slight generalization. Airport 
currency exchange counters post different prices for buying and selling trades between a 
pair of currencies. While they do so primarily to turn a profit, the same idea can be used to 
express your uncertainty about the event, or events, controlling the payoffs in the contract. 
So, rather than require decision makers to post the same number for buying as for selling a 
contract, we wish to allow for the possibility that they post different numbers. Put differ-
ently, rather than oblige an agent to give a single two-​sided probability for betting on and 
against the event L, written P(L), we instead oblige the agent to give two one-​sided numbers: 
(1) a one-​sided lower probability denoting the maximum buying price for a bet on L, written 
P(L); and (2) a one-​sided upper probability denoting the minimum selling price for a bet on 
L, written P ̅(L).

Notice that for someone whose fair price is P(L), he will judge any price α < P(L) to buy a 
bet on L (to bet on L) as desirable. Similarly, prices to sell a bet on L (to bet against L) that are 
strictly greater than P(L) will likewise be judged desirable. It is only the fair price, the single 
numerical value of P(L), that marks the agent’s indifference. Similar reasoning applies to the 
one-​sided lower probability P(L). Any price α < P(L) will be judged a desirable price to bet 
on L, and any α > P̅(L) will be judged a desirable price to bet against L. The difference is that 
there are (possibly) two price points where the agent expresses indifference between a sure 
award and risky reward in the same currency, namely, when the buying price for a bet on L is 
P(L) and when the selling price for bets on L is P̅(L). Only when they are the same value is the 
agent committed to a fair price. Since 0 ≤ P(L) ≤ P̅ (L) ≤ 1, one consequence is that any price 
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p offered between the agent’s lower and upper probabilities for L, any α such that P(L) < α < 
P̅(L), the agent is neither obligated to sell nor to buy contracts on L.

It is a commonplace to distinguish between risk and uncertainty, an idea that both Knight 
and Keynes put forward a century ago (Keynes, 1921; Knight, 1921). The notion that it is some-
times sensible to permit a bounded range of probability values rather than to insist on numeric-
ally determinate probability values is an even older idea, dating back at least to (Bernoulli, 1713) 
and (Boole, 1854). But the rich mathematical and philosophical consequences from working 
out these ideas have only begun to come into focus more recently (Walley, 1991; Augustin, 
Coolen, de Cooman, and Troffaes, 2014; Troffaes and de Cooman, 2014).

The lower probability model presented above is very basic and supplied with a behavioral 
interpretation that is very close to the original, canonical model:  instead of one number to 
describe two attitudes, we allow each attitude to have its own number. This slight change, how-
ever, from a fair-​price model to a buying and selling price model of belief, is enough to put 
another dent in Good’s principle. We turn to see how, next.

Dilating probabilities

What does Knightian uncertainty look like in our bare-​bones lower probability model? The 
short answer is that we have the means to distinguish between indifference and incomparability, 
and to do so behaviorally in the same simple terms of the canonical Bayesian model. For a 
longer answer and a consequence, an example.

Suppose there is a ticket that pays to its owner 100 euros on the event of G, Germany wins 
the next World Cup. If you owned such a ticket, how much would you demand to part with it? 
So, 100 euros would make you whole, so you should at least be indifferent between receiving 
a sure 100 for the promise of 100 on the event of G being true.3 Similarly, if you are sure they 
would lose, the ticket would be worthless to you, so you would find any (positive) price a desir-
able selling price. Conversely, how much would you pay to buy such a ticket? Here again if you 
were maximally uncertain (but otherwise abided by the setup for the model), you might not be 
willing to pay anything for such a ticket. In such a case, your lower probability would be 0. If 
instead you were certain they will win, you would find any price less than 100 euros desirable 
and be indifferent to owning the ticket and having a 100 euro note in your pocket: for you, 
being certain of the outcome G, those two rewards are equivalent.

For my part, I would not know how to give a fair price for G. This does not rule out being 
bullied by a Bayesian into announcing one, but then again that would be a different decision 
problem. Hypothetically, I would pay up to 10 euros for a chance to win 100 if Germany won 
the next World Cup. They’ve done it before, I reckon, so there is some chance they could do 
it next time. On the other hand, if I had such a ticket, what price would I accept to relinquish 
my chance at 100 euros if they win? Here I might accept nothing less than 90 euros. So, any 
price between 10 and 90 euros I would neither buy nor sell a 100 euro contract on G. These 
prices don’t have to be symmetric, nor need they be calibrated to a statistical model. This is still 
a subjective probability model and these are my attitudes toward buying and selling hypothetical 
100 euro contracts on G.

Let us introduce some notation to reason with attitudes like the one I  have toward G. 
A lower probability space is a quadruple (Ω, A,  , P) such that Ω is a set of states, A  is an algebra 
over Ω,  is a nonempty set of probability functions on A, and P is a lower probability function on 
A with respect to —​that is, P(F ) = inf {p(F) : p ∈ } for each F ∈ A. The value P(F) is called 
the lower probability of F. The upper probability function P̅ is then defined by stipulating that P̅(F) =   
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1–​ P(Fc) for each F ∈ A; the value P̅(F) is called the upper probability of F. If P(H) > 0, then 
conditional lower and upper probabilities are defined as P(E∣H) = inf {p(F∣H) : p ∈ } and P̅ 
(F∣H) = sup{p(F∣H) : p ∈ }, respectively.

Now return to the highly uncertain event, G, that Germany wins the next World Cup. The 
upper probability of G is close to 1, P̅(G) = .9, and its lower probability is close to 0, P(G) = .1, 
such that

	 P̅(G) –​ P(G) = 0.8.	 (31.3)

Next, imagine a fair coin toss, whose outcomes are heads (H) and tails (Hc). The outcomes 
of this normal coin flip form a partition, ε  =  {H,Hc}, and the same is true of this future 
championship title, G = {G,Gc}. With these preliminaries in place, we rehearse an example 
from (Seidenfeld, 1994) in which a probability estimate of an event becomes less precise upon 
receiving information about how the tossed coin lands, regardless of whether it lands heads or 
lands tails.

Since we judge the coin flip to be fair, our expectation of the coin landing heads is the same 
as our expectation of it landing tails.

	 P H P H P H P Hc c( ) ( ) ( ) ( ).= = = =
1

2
	

(31.4)

Equation (31.4) is what a fair price looks like in a lower probability model. We also assume 
that the outcome of this coin toss landing heads is independent of Germany winning this future 
championship. If any pair of events are probabilistically independent, surely the events heads and 
Germany wins! are. So, for each p ∈ , we have

 	 p G H p G p H
p G

( ) ( ) ( )
( )

.∩ = =
2

	 (31.5)

Lastly, let F be the event of either G and H both occurring or both failing to occur, namely,   
F := (G∩H)∪(Gc∩Hc). Given our setup, it follows that the probability of F is determinate: that 
is, p(F ) = 1

2, for all p ∈ .
Proof. For each p ∈ , observe that

	

p F p G H p G H
p G p G

p G p G

c c( ) ( , ) ( , )
( ) ( )

( ) ( )

.

= +

= + −

= + −

=

2

1

2
1

2
1

2

	 (31.6)

Figure 31.3 may help to fix intuitions as to why p(F ) =  1
2, for all p ∈ , is so by visualizing 

three probability mass functions that differ with respect to the probability that G. Note that the 
counter-​diagonal is the complement of F, Fc, which is the event that Germany wins if and only 
if the coin lands tails. Put differently, if Germany winning and the coin landing heads are each 
coded as “success” and Germany losing and tails are coded as “failure,” the event F says that the 
coin and Germany both succeed or both fail, whereas the complement event Fc that exactly 
one of the two succeeds.
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Let ε be a positive measurable partition of Ω. We say that ε dilates F just in case for 
each e ∈ ε:

	 P( P PF e F F F e| ) P( ) ( ) ( | ).ε ε= < ≤ < = 	

In other words, ε dilates F just in case the closed interval P P( ), ( )F F  is contained in the open 
interval P E e P E( | ), ( | )ε ε= =( )3  for each e ∈ ε (Walley, 1991, Seidenfeld and Wasserman, 
1993, Pedersen and Wheeler, 2014). What is remarkable about dilation is the specter of turning 
a more precise estimate of F into a less precise estimate, no matter what event from the parti-
tion occurs.

Observe that in our World Cup example, F is dilated by the coin toss ε = {H,Hc}: although 
the initial estimate of F is precisely one-​half, learning the outcome of the coin toss, whether 
heads or tails, dilates the probability estimate of F from one-​half to [.1,.9].

Proof. We show that 0.1 = P(F∣H) < P(F ) = 1∕2.

	

P F H p F H p

p G H G H H

p H
p

c c

( | ) inf ( | ) :

inf
([( ) ( )] )

( )
:

= ∈{ }
= ∩ ∪ ∩ ∩ ∈











= ∩ ∈








= ∈








=

inf
( )

( )
:

inf
( ) ( )

( )
:

.

p G H

p H
p

p G p H

p H
p





0 1

	

A similar argument establishes 9∕10 = P̅ (F∣H) > 1∕2, and the same argument holds if instead the coin 
lands tails, i.e., P(F∣Hc) = 1∕10 and P̅(F∣Hc) = 9∕10. Thus, F is dilated by the coin toss, ε = {H,Hc}.

Here again Figure 31.3 may help fix intuitions about this result. Notice that the observa-
tion of the coin landing heads (H) effectively restricts attention to the first column. Since we 
learn that H has occurred, the possibilities in the second column associated with tails (Hc) are 
ruled out. But, the probability mass assigned to the event F in the first column varies widely 
in Figures 31.3(a), 31.3(b), and 31.3(c). Only in Figure 31.3(b) does the F have the value 1∕2; 
Figures 31.3(a) and 31.3(c) reveal that the range of uncertainty for F given H is precisely the 

F

H Hc

(a)

F

F

H Hc

G

Gc

(b)

F

H Hc

(c)

Figure 31.3  Tables for an uncertain event (row) G = {G,Gc}, a fair coin randomizer (column) ε = 
{H,Hc}, and the pivotal event (diagonal) F denoting G if and only if H. (a) illustrates when p(G) = 9∕10 
and p(Gc) = 1∕10, (b) when p(G) = p(Gc) = ½, and (c) when p(G) = 1∕10 and p(Gc) = 9∕10, for p ∈ . For 
each (a), (b), and (c), p(F) = ½.
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uncertainty for G displayed in Equation (31.3). The same argument applies if the coin instead 
landed tails. As these two outcomes exhaust the possible outcomes of the coin toss, being 
told that the coin was tossed is enough for a Bayesian to dilate his probability assessment of F. 
For a discussion of the philosophical and mathematical features of dilation, see (Pedersen and 
Wheeler 2014,  2015).

Good’s principle and dilation

Recall the illustration of Good’s principle in Figure  31.2. Following the presentation in 
(Pedersen and Wheeler, 2015) of an example due to (Seidenfeld 1994), suppose that at t0 you 
face a decision problem O = {o1,o2} where, as before, option o1 is a basic decision problem A in 
which you are to choose at t1 between two acts: a1, which pays you €1 if E occurs and ‘pays’ 
you -​€1 if Ec, i.e., σ(a1,F ) = €1 and σ(a1,Fc) = -​€1;4 or the act a2 which ‘pays’ you a constant 
-​€0.50. Assume that your utility is linear in euro amounts with u(€x) = x. Figure 31.4 fills in 
these details.

In this basic decision problem A, which is the result of implementing option o1, the sub-
jective expected utility of a1 is €0 and the subjective expected utility of a2 is -​€0.50. So, a1 is 
uniquely admissible from A: receiving nothing is better than paying 50 cents.

Turn now to option o2, whereby at t2 you face a derived decision problem conditional on 
the outcome of experiment ε. Here you are confronted with the same decision problem A at 
t2 after learning (only) that H obtains or Hc obtains at t1. In the derived decision problem act 
a1 is inadmissible against a2. Why? Because in the basic decision problem p(F ) = 1∕2, but in the 
derived decision problem F is dilated by ε to 0.1 and 0.9: whether the outcome of the fair coin 
toss is heads or tails, F conditional on that outcome is highly uncertain. Thus, in the derived 
decision problem, there are probability mass functions p ∈  whereby p(Fc) is .9, in which case 
the minimum expected utility of a1 is -​€0.80. So, in the derived decision problem, by Savage’s 
Γ-​Maximin decision rule, a2 has a higher minimum expected value (-​€0.50) than a1 (-​€0.80) regard-
less of the outcome of the experiment, ε.

Assume that a decision maker is certain that she will not change her preferences, will update 
her belief state by Generalized Bayesian conditionalization (Walley 1991), and that she will 
choose to maximize her minimal expected utility. Then, in a pairwise choice between a1 of 

O

A

o1

1 if F

− 1 if Fc
− 0.50

a2a1

E

o2

A

H

a1 a2

A

Hc

a2 a1

− 1 if Fc
− 0.50 − 0.50

1 if F

− 1 if Fc

1 if F

Figure 31.4  A sequential decision example
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the basic decision problem determined by option o1, which has an expected value of zero, and 
a2 of the derived decision problem determined by option o2, which has an expected value of -​
$0.50, observing cost-​free information at t1, i.e., learning the outcome of the fair coin toss , 
is devalued. Here, under the conditions for Good’s principle slightly adapted to a lower prob-
ability model, we have a case where the decision maker would strictly prefer not to receive 
cost-​free information!

Conclusion

Let’s review. The informal version of Bayesian lore has it that it is irrational to turn down cost-​
free information, since the worst case—​when the information is irrelevant to your decision 
at hand—​will leave you at status quo ante. The first restriction to Good’s principle is that it 
does not apply to strategic decision problems, where strategic considerations may disadvan-
tage a player with more information than her opponent. The problem of adverse selection 
is the classic example, and we discussed Akerlof ’s market for lemons example and Osborne’s 
formalization. This limitation is fairly well known, however, which is why Good’s principle 
is usually formulated to govern single-​person decisions. We then formalized Savage’s version 
of Good’s principle in terms of his distinction between a basic and derived decision problem, 
and where the role maxmin reasoning plays is clear. But, in what may be less widely known, 
we appealed to the phenomenon of dilation to argue that there are exceptions to Good’s prin-
ciple even for single-​person decision problems. Specifically, if one introduces an upper and 
lower probability model to accommodate a modest form of “Knightian uncertainty,” then a 
probability assessment can become less precise after learning the outcome of an experiment, 
no matter how that experiment turns out. Finally, we returned to our discussion of basic 
and derived decision problems in Savage’s framework to show that this dilation example can 
be plugged into Savage’s original formulation of Good’s principle to show that, by applying 
Savage’s Γ-​Maxmin principle, the decision maker would rationally choose to forgo the offer 
to receive cost-​free information about the coin flip experiment ε. Thus, for imprecise prob-
abilities, the “commonplace that knowledge is not disadvantageous” is false, even when the 
costs of obtaining the information is zero. The upshot is that the scope of Good’s principle is 
far narrower than originally conceived and narrower still than many current decision theorists 
maintain.

The role that Bayesian methods ought to play in models of bounded rationality remains 
controversial in some circles, and there are some good reasons. Models of bounded ration-
ality typically focus on procedures, algorithms, or psychological processes involved in 
reaching a decision, securing a goal, or making a judgment, yet these details are ignored in 
the canonical model. Another branch of bounded rationality focuses on adaptive behavior, 
and coherent comparative judgments are not, directly at least, the most obvious way to 
frame this problem.

But it would be incautious to dismiss all of the tools of statistical decision theory, and unwise 
to ignore the developments in the field over the last half-​century. It is hoped that a wider 
awareness of better results with less information results in decision theory—​even under the strict 
adherence to the highly idealized conditions of those mathematical models—​will plant a seed 
of future progress in psychology, where concrete examples are well known. From studying 
axiomatic departures from the canonical Bayesian theory, it is hoped that the grip of Bayesian 
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dogma will loosen to expand the range of new, creative possibilities for applying a set of prac-
tical and powerful mathematical methods (Wheeler, 2018).

Coda: blinded by omniscience

We end with a short remark on logical omniscience. Most formal models of judgment and 
decision making entail logical omniscience, the presumption that agents have complete know-
ledge of all that logically follows from their commitments combined together with any and all 
set of options that are admissible to them for choice. This is as psychologically unrealistic as it is 
difficult, technically, to remove from formal models. The problem is especially troublesome to 
Bayesian decision theory, making it difficult to apply the theory to uncertainty about matters of 
logic and mathematics. Savage, ever prescient, saw the problem that logical omniscience poses 
to the subjective theory of probability:

The analysis should be careful not to prove too much; for some departures from 
theory are inevitable, and some even laudable. For example, a person required to risk 
money on a remote digit of π would, in order to comply fully with the theory, have 
to compute the digit, though this would really be wasteful if the cost of computation 
were more than the prize involved. For the postulates of the theory imply that you 
should behave in accordance with the logical implications of all that you know. Is it 
possible to improve the theory in this respect, making allowances within it for the 
cost of thinking, or would that entail paradox, as I am inclined to believe but unable 
to demonstrate?

Savage, 1967, excerpted from Savage’s prepublished draft.   
See notes in Seidenfeld et al., 2012

Notes
	1	 Good’s principle is a synchronic rationality principle, governing here the synchronic choice at t0 

between options o1 and o2. Our informal discussion of choices taken at future times ought to be viewed 
as all hypothetical choices entertained at t0. Put differently, in choosing between o1 and o2, we are com-
paring at t0 the consequences from engaging in two lines of suppositional reasoning.

	2	 Often a uniqueness result for probabilities and utilities accompanies the representation result (asserting, 
for example, that the probability function is unique and that the utility function is unique up to a posi-
tive affine transformation).

	3	 Assume a euro today is worth the same euro in the future, or that values are so-​adjusted.
	4	 Here we abuse our notation by writing σ(a,F) = €1, for instance, to express that σ(a,⋅) is a constant 

€1 on F.
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